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Abstract. History and development of the tangent modulus from the origins to the recent nonsmooth
damaging versions are presented. Load history and stability analyses of structures of nonlinear revers-
ible or irreversible materials are based on the concept of tangent modulus. Generally, instantaneously
changing tangent modulus is needed and the solution yields iteration process. In the case of inelastic
problems, the switch from loading to unloading of the material behaviour results in nonsmooth
material functions. Nonsmooth, generally saw-tooth like behaviour happens in composite, laminated
or rock type materials, or in the interaction of concrete and the reinforcement, too. Recently, damage
and localization are in the focus of structural analyses, extending the tangent modulus to the negative
cases, as well. Consequently, an overview of the history and development of the tangent modulus
containing the recent modifications seems to be necessary. On the other hand, the more than a
century long history of the tangent modulus is a marvellous study of the parallel development of
mechanics and mathematics, by following the mutual inspiring effect of them through the activity of
such pioneers like P.D. Panagiotopoulos in creating Nonsmooth Mechanics.
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1. Introduction

The classical elastic load history and stability analyses are based on the convex and
smooth elastic potential. The nearly also classical elastic-plastic analyses need also
smooth and convex potential by reducing the problem to a quasi-elastic analysis.
The modern inelastic stability analyses including strain softening and damage are
extended to nonconvex potentials by the generalization of the tangent modulus.
However, the condition of smoothness is further on required by using the concept
of linear comparison solid.

The nonsmooth characteristics of strain energy functionals can be derived from
two facts. On one hand, it can be caused by the change of material phases: the
switch from loading to unloading is an original nonsmooth characteristics of any
inelastic behaviour. Even to avoid nonsmoothness, the concept of linear compar-
ison solid has been introduced by Hill (1958). On the other hand, the nonsmooth
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properties of strain energy can be resulted by nonsmooth functions of material laws
directly, due to original or approximate polygon like characteristics.

By using the tools of nonsmooth analysis, we can get over the difficulties of
nonsmoothness of both type. By the help of the nonsmooth tangent modulus, global
load history or stability analyses of nonlinearly elastic or inelastic structures can
be investigated.

In this paper the development and modifications of the tangent modulus is
presented. Analytical and numerical aspects and application of the nonsmooth
versions are considered.

2. The history of the tangent modulus

Since the tangent modulus plays a key role in structural analyses, it seems to be
necessary to overview the development of it. Thus we can see how the tangent
modulus changed during about one and a half century, from a simple material
constant to an indicator tensor of dissipative systems. In the history of the tangent
modulus we follow the state of art given by Bruhns in (1984).

2.1. THE BIRTH OF THE TANGENT MODULUS

The concept of tangent modulus is resulted by the development of plasticity, namely,
the plastic bifurcation problems. Plastic column buckling, the possible bifurcation
of the structure was in the focus of interest in the past, however, the progress in the
subject was not smooth.

The problem to calculate the critical value of the load on the top of the column,
when the straight configuration becomes unstable, was first solved by Euler in
1744, by assuming linear elastic material. However if the stress in the column
exceeds the yield limit, plastic flow will occur, and the original elastic modulus
is not valid any more.

A typical stress-strain curve σ = σ (ε) can be seen in Figure 1a where the slope

Et = dσ/dε (1)

of the curve beyond the elastic limit σ0 is the tangent modulus. The tangent mod-
ulus is still the function of strains, since Et(ε) = dσ (ε)/dε, thus for the stress-
strain function, a bilinear idealization seen in Figure 1b is often used. This model
seems to be advantageous since Et = const , however, the nonsmoothness in σ (ε),
namely, the jump in the slope passing through the yield limit, causes difficulties.

The first revised formula for the critical load was suggested by Engesser in
1889 by using the tangent modulus Et in the formula of Euler. A bit later, in
1891 by Considére and in 1894 by Jasinski, an important observation was made
by pointing out that in a buckling mode, in one part of the section a purely elastic
strain reversal will occur, while in the remaining part, plastic loading will continue.
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Figure 1. The tangent modulus and the bilinear idealization.

Considére introduced the so-called reduced modulus Er for which E � Er � Et .
Some examples were performed later by Kármán in 1910.

Then, for a long period, the reduced modulus theory was accepted in the subject,
until in 1946-47 a considerable progress has been investigated by Shanley.

Shanley (1946), by the help of a simple model demonstrated the important dis-
tinction between uniqueness and stability. He recognised that the tangent modulus
load is the lowest possible bifurcation load. At this load, the straight configuration
loses its uniqueness but not its stability. Moreover, Shanley has written the tangent
modulus in the form in which it is used in our time, too, as

δσ =
{
E δε for elastic loading or elastic–plastic unloading

Et δε for plastic loading
(2)

By an other important observation of Shanley that at the instant of bifurcation there
is no change in the load, Shanley quasi made an advance of the grounds of the
concept of linear comparison solid of Hill. However, it took another decade until
the continuum theory of bifurcation was laid down by the fundamental paper of
Hill in 1958.

2.2. EXTENSION OF THE TANGENT MODULUS TO THE CONTINUUM THEORY

Until the famous paper of Hill in 1958, the tangent modulus was considered as the
property of a material point only. Hill was who extended the concept of the tangent
modulus to the whole body or structure by characterising the ‘resistance’ of the
body by the tangent modulus (1962, 1967, 1978).

By following Bruhns (1984), here we refer only to those results of Hill which
are in closed connection with the tangent modulus. Hill suggested for the rate
constitutive relations of bodies with elastic-plastic material and finite deformations
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as follows

σ̇ = Eε̇ − α

h
(λε̇)λ = σ̇ (ε̇), (3)

in the case of smooth yield surface and associated plastic deformations. Here σ̇ is
the tensor of the so-called objective stress increments and E is the tensor of the
instantaneous elastic moduli while λ represents the normals to the yield hypersur-
face interfaces separating the domains of elastic and plastic behaviour. Here α is a
positive function of hardening as follows

α =
{

1 if λε̇ � 0

0 if λε̇ < 0
(4)

as an indicator of the regimes of plastic loading and unloading. When the stress
lies within the yield surface, the material is purely elastic thus α = 0.

On the basis of Hill’s tangent modulus, a strain rate potential

W(ε̇) = 1

2
ε̇Eε̇ − 1

2

α

h
(λε̇)2 = We(ε̇)+Wp(ε̇, α) (5)

can be introduced as the potential function of the stress rates

σ̇ = ∂W(ε̇)

∂ε̇
= Eε̇ − α

h
λε̇λ. (6)

However, this function is nonsmooth with respect to the strain rates. It has
continuous first derivative and partly continuous second derivative. The jump in
the second derivative is due to the jump in the indicator α. Without using the tools
of nonsmooth analysis the nonsmooth potential function (5) cannot be handled.

Based on the observation of Shanley according to which in column buckling
at the instant of bifurcation unloading is absent, Hill introduces a special ma-
terial called linear comparison solid of the nonlinearly inelastic material with
the property that unloading is excluded through α=1. Thus, he could avoid the
nonsmoothness by obtaining a smooth potential

W(ε̇) = 1

2
ε̇Eε̇ − 1

2h
(λε̇)2 = We(ε̇)+Wp(ε̇). (7)

Hill’s results have a great importance. Any solution of the rate boundary value
problem for the elastic-plastic solid is unique when the uniqueness of the analogous
boundary value problem for the comparison solid is assured.

Hill’s results are related to elastic-plastic behaviour. However, in modern sta-
bility analyses the strain softening and damage, moreover, the strain localization
became even more important. Thus, the results of Hill have recently been exten-
ded to these cases, on the basis of the thermodynamics and by using the tools of
functional analysis.
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2.3. THERMODYNAMIC GENERALIZATION OF THE TANGENT MODULUS

The thermodynamic extension of the tangent modulus is the merit of Nguyen
(1990, 1993), Halphen and Nguyen (1975) by introducing the generalized time-
independent standard dissipative material. This concept is the basis of the modern
bifurcation theories. General constitutive relations of strain softening materials
are given by the authors Rice (1971, 1976), Rice and Rudnicki (1980), Raniecki
and Bruhns (1981). Modern mathematical description is given by Benallal, Billar-
don and Geymonat (1989), Billardon and Doghri (1989), Benallal, Billardon and
Geymonat (1993).

Assuming small isothermal strains according to Benallal, Billardon and Gey-
monat (1989, 1993), the behaviour of generalized time-independent standard dis-
sipative materials can be characterised by three thermodynamical potential func-
tions, the free energy� = �(ε, α, T ), the reversibility function f (A, α, T ) and the
dissipation function F(A, α̇, T ), all expressed in term of the strains ε, the internal
kinematical variables α, and the temperature T.

Generally the free energy

� = �(ε, α, T ) (8)

is the potential function of the statical type thermodynamic state variables, the
stresses σ , the thermodynamic forces A, and the entropy s as follows

σ = ρ
∂�

∂ε
, A = −ρ ∂�

∂α
, s = −ρ ∂�

∂T
. (9)

The reversibility is governed by the function f (A, α, T ) specifying the domain
of reversibility

C(α) = {A|f (A, α, T ) � 0}. (10)

The dissipation function F(A, α̇, T ) yields the normality law

α̇ = λ
∂F

∂A
= Nc(a), (11)

where Nc(a) is the outer normal vector of the convex set C(α) at A. The nonnegat-
ive multiplier λ � 0 results from the consistency condition ḟ = 0:

λ =<
∂f

∂A
◦" : ε̇
h

>, (12)

where

h = ∂f

∂A
◦$ ◦ ∂F

∂A
− ∂F

∂α
◦ ∂F
∂A

> 0, (13)

moreover,

" = −ρ ∂
2�

∂α∂ε
, $ = ρ

∂2�

∂α∂α
. (14)
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Here the symbol ◦ denotes the scalar product while ⊗ denotes the tensorial product
between tensors. Symbol : denotes the double tensor contraction, and < x >=
max < x, 0 > ensures the nonnegativity.

Considering isothermal process, the time-independent standard dissipative ma-
terial can be characterised by three simplified potential functions �(ε, α), f (A, α)
and F(A, α̇). In this case the temperature and the entropy can be eliminated, thus,
the thermodynamic state laws (9) yield

σ = ρ
∂�

∂ε
, A = −ρ ∂�

∂α
. (15)

By the help of these functions the general thermodynamic form of the tangent
modulus can be obtained. Taking the time derivative σ̇ = ∂σ/∂t as quasi-static
velocity into account, the rate constitutive relation can be written in the form

σ̇ = L(ε, α) : ε̇, (16)

where the operator L is the tangent modulus as follows

L =
{

E if f (A, α) = 0 and b : E : ε̇ < 0

E − (E:a)⊗(b:E)
h

if f (A, α) = 0 and b : E : ε̇ � 0′ (17)

in which

E = ρ
∂2�

∂ε∂ε
(18)

is the tensor of elastic moduli, and the tensors

a = E−1 : "T ◦ ∂F
∂A

and b = ∂f

∂A
◦" : E−1 (19)

are related to the law of normality and the domain of reversibility.
The general form (17) of the tangent modulus contains equally any nonlinear

inelastic and even strain softening or damaging characteristics of materials. Let us
consider now the most important special cases.

In the case of elastic-plastic materials, function � is the Helmholtz free energy.
According to Benallal, Billardon and Geymonat (1989), for elastic-plastic materi-
als with non-associated flow law, f is the yield function and F is the plastic potential
function, consequently, tensors a and b are the gradients of the plastic potential and
the yield surface, respectively. Thus, the tangent modulus is modified to

L =
{

E if f (A, α) = 0 and b : E : ε̇ < 0

E − (E:a)⊗(b:E)
H+a:E:b if f (A, α) = 0 and b : E : ε̇ � 0

(20)

where H is the generalized strain-hardening modulus being positive, zero or neg-
ative for strain hardening, perfect or strain softening plasticity, respectively, see
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Neilsen and Schreyer (1993). For associated flow law, even f = F , that is a=b,
consequently, the tangent modulus (17) is simplified to

L =
{

E if f (A, α) = 0 and a : E : ε̇ < 0

E − (E:a)⊗(a:E)
H+a:E:a if f (A, α) = 0 and a : E : ε̇ � 0

(21)

Moreover, in the case of linearly elastic and perfectly plastic materials, a=b=1 and
∂f/∂α = 0, consequently, the tangent modulus yields

L =
{

E for elastic loading, elastic–plastic unloading

0 for plastic loading
(22)

In the case of damaging materials, a scalar damage coefficient D is introduced
among the internal variables. According to, for elastic-damaging materials, let
D be 0 � D � Dcr � +∞, fulfilling the basic condition that for D = 0, the
material is perfectly elastic, and for D = Dcr , the material is perfectly damaged.
The stiffness of the material is characterised by a function g(D)E where E is the
initial elastic modulus. Thus, by means of these functions a rate constitutive law
of the damaging material can be obtained detailed in Benallal, Billardon and Gey-
monat (1993). For a very simple model of the elastic-damaging material, Benallal,
Billardon and Geymonat (1989) suggest 0 � D � 1 and the free energy to be
ρ�(ε,D) = 1

2 (1 − D)ε : E : ε, moreover, k(D) = Qo +MD where Qo and M
are material constants. Thus they suggest the tangent modulus to be as

L = (1 −D)E − (E : ε)⊗ (ε : E)
M

(23)

for the elastic-damaging material.
Other tangent moduli are obtained for continuum damage material on the basis

of fracture mechanics by Janson and Hult (1977) and Del Piero and Sampaio
(1989).

2.4. EXTENSION OF THE TANGENT MODULUS TO LOCALIZATION

Recently, the phenomenon of localization, namely if the damage or strong strain
softening is localized into a small, quasi a zero volume of the body, is in the focus
of the research. As we have seen, by considering elasto-plastic material with non-
associated flow law, the tangent modulus is modified to (20), where the part

Dep = E − (E : a)⊗ (b : E)
H + a : E : b

(24)

is the elasto-plastic tangent modulus tensor. If the plastification leads to strain
softening localized into a small part of the body, the tangent modulus needs certain
modification.
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Based on the results of the analysis of the shear band localization (see the refer-
ences in the state of art by Neilsen and Schreyer (1993), and by Szabó (1998)), the
modified tangent modulus yields the second order acoustic or localization tensor
specified by

Q = n · Dep · n, (25)

where n is the normal vector of the surface of localized deformations or discon-
tinuity, separating the zone of localized deformations from the rest of the body.
The acoustic tensor Q and the normal vector n is used as the basis of classification
of the bifurcation modes, that is for distinguishing the diffuse (nonlocalized) and
discontinuous (localized) bifurcation forms.

3. The nonsmooth tangent modulus

After the short review of the tangent modulus, we focus ourselves to the nonsmooth
characteristics of it. Before detailing the consequences of the nonsmooth material
behaviour, the short history of the nonsmooth potential theory is considered.

3.1. DEVELOPMENT OF THE NONSMOOTH POTENTIAL THEORY

For conservative mechanical systems the stability conclusions can be drawn simply
from the properties of the total potential energy functional, by the Lagrange–
Dirichlet theorem Thompson and Hunt (1973, 1984). The fundamental stability
statements are based on the classical potential law

σ (ε) = ∂W(ε)

∂ε
(26)

where functional W(ε) is the smooth and convex strain energy density, σ = {σij }
and ε = {εij } are the stress and strain tensors, respectively.

If the functional W(ε) is nonsmooth but the material is reversible, the classical
potential law (26) can be extended to polygonal elastic cases. Panagiotopoulos
pointed out in (1988 p. 85) that while the ‘Smooth Mechanics’ is based on the
notion of the classical potential, the ‘Nonsmooth Mechanics’ is concerned with the
nonsmooth and/or nonfinite convex or nonconvex superpotentials.

The generalization of the classical potential law to nonsmooth but convex po-
tentials named superpotential was introduced by Moreau (1963, 1968) by using
the tools of the convex analysis. The convexity of an energy function implies the
monotonicity of the concerning stress-strain relation. Variational principles related
to such kind of problems have the form of variational inequalities. In order to
overcome the constraint of monotonicity, the notion of nonconvex superpotential
was introduced by Panagiotopoulos (1981) by using the generalized gradient of
Clarke (1975) and the results of Rockafellar (1970) leading to the hemivariational
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inequalities in mechanical applications. In his pioneer book (1985) Panagioto-
poulos laid down the foundations of the ‘Nonsmooth Mechanics’ and established
the substationarity laws of mechanics. So he obtained the generalized substation-
arity principles for nonconvex potentials (1985, 1988). Further generalizations of
hemivariational inequalities and applications are given by Moreau and Panagioto-
poulos (1988), and later Naniewicz and Panagiotopoulos (1995).

The term of nonsmoothness in sense of the definitions of Panagiotopoulos (1985)
is based on the Lipschitzian property of functions. Simply saying, for a break type
discontinuity of a function f(x) at x, the Lipschitzian condition at x fulfils, while
for a jump type discontinuity it does not. The existence of both the subdifferential
∂f (x) and the generalized gradient ∂̄f (x) requires the Lipschitzian property of the
function at x. A point xo is called a substationarity point of f (x) if it is a solution
of the multivalued equation named inclusion

0 ∈ ∂̄f (x) (27)

where the generalized gradient ∂̄f (x) of Clarke is a set being never empty if f (x) is
Lipschitzian at x. If f (x) is convex then ∂̄f (x) coincides with the subdifferential:
∂̄f (x) = {grad f (x)}, moreover if it is also continuously differentiable at x, then
∂̄f (x) = {grad f (x)}.

If the material is reversible but the strain energy functional W(ε) is nonsmooth,
the conservative stresses can be obtained from the inclusion

σ (ε) ∈ ∂W(ε) (28)

named superpotential law, introduced by Moreau in (1968). According to Panagioto-
poulos (1985) ∂W(ε) is the subdifferential of the superpotential W(ε), a multival-
ued mapping as the generalization of the classical potential law, see Panagioto-
poulos (1981).

Further generalization given by Panagiotopoulos in 1981 aimed to extend the
potential law to nonmonotone material behaviour. If the material has a nonmono-
tone constitutive law but the material is reversible, the nonconvex superpotential
law

σ (ε) ∈ ∂̄W(ε) (29)

is valid, by using the generalized gradient of Clarke. In this way, a wide range of
decreasing and even a saw-tooth form material behaviour can be dealt with.

According to Panagiotopoulos (1988), the classical linear elasticity laws can
be replaced by nonlinear elasticity laws σ (ε) = ∂W(ε)/∂ε or more generally,
by the monotone nonsmooth law σ (ε) ∈ ∂W(ε), and even by the nonmonotone
nonsmooth law σ (ε) ∈ ∂̄W(ε), if the material is reversible.

In his basic works, Panagiotopoulos deals also with the potential law of dissip-
ative mechanical systems in (1983, 1985, 1988). From the view of the nonsmooth-
ness and nonconvexity on thermodynamic bases, he obtain mainly the same sta-
tionarity conclusion as mentioned above. By introducing a general nonsmooth
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Figure 2. Locking-plastic materials and generalized conditional joints.

thermodynamic potential of dissipation and applying the superpotential law of
Clarke, he gets to the generalization of the hypothesis of normal dissipation. He
states that in the case of dissipation or unloading, an incremental analysis has to be
applied. He deals generally with strongly nonmonotone and nonsmooth cases like
saw-tooth behaviour and damage, but in aspect first of all the equilibrium and not
the stability.

On the basis of the results of Panagiotopoulos, we can extend the concept of
tangent modulus to the nonsmooth cases, including the combination of plastic and
locking behaviour, the so-called generalized conditional joints as well.

3.2. GENERALIZED CONDITIONAL JOINTS AS SUBDIFFERENTIAL

CONSTITUTIVE MODELS

The concept of the nonsmooth tangent modulus can be related to the so-called
locking materials, according to Suquet (1985). The initial stiffness of this mater-
ials during a loading process increases and finally, the material can become even
perfectly rigid seen in Figure 2a. In Figure 2b the perfectly locking behaviour is
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Figure 3. The convex sets of the locking and yield conditions.

illustrated. In spite of the fact that this type of materials are reversible, they can
be handled similarly to the irreversible problems. The locking behaviour can be
combined with the plastic behaviour seen in Figure 2c, yielding to the family of
the so-called conditional joints described first by Kaliszky (1975). Further gener-
alization of the conditional joints by considering them as subdifferential material
property was given by Kurutz (1985, 1987), namely, by considering the locking
behaviour as the dual version of the reversible plastic characteristics. Stability
conclusions due to nonsmooth behaviour has been analysed also by Kurutz (1991,
1993, 1994, 1996).

In Figure 2d the saw-tooth type stress-strain diagram of some recently used
materials and structures can be seen. Composite, fibre-reinforced, laminated or
rock-like materials, adhesive connections, moreover, the interaction of concrete
with the steel reinforcement are characterised by this type of functions.

The typical nonsmooth material behaviour seen in Figure 2c and 2d can be
considered as generalized conditional joints governed by subsequent locking and
plastic yield conditions, respectively, specifying the convex sets in the function
space R6

Ki(xk) = {εij (xk)|gi(εij (xk)) � 0} xk ∈ V, εij ∈ R6 i = 1, 2, . . . , m
(30)
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and

Kc
j (xk) = {σij (xk)|fj (σij (xk)) � 0} xk ∈ V, σij ∈ R6 j = 1, 2, . . . , n

(31)

represented by six-dimensional convex hypersurfaces illustrated symbolically in
Figure 3. In the figure, three surfaces can be seen, representing a subsequent elastic-
plastic-locking-plastic behaviour seen in Figure 2c. In (30) and (31) i and j are the
number of subsequent locking and yield conditions, respectively.

To extend the constitutive law of the generalized conditional joints to R6, the
associated indicator functionals of the convex sets K and Kc are specified as

JK(εij ) =
{
3g(εij ) = 0, for εij ∈ K
∞ for εij /∈ K (32)

and

J cK(σij ) =
{
"f (σij ) = 0, for σij ∈ Kc

∞ for σij /∈ Kc
(33)

respectively, representing the normality or orthogonality law, where 3 � 0 and
" � 0 are the multipliers of the locking stress and plastic strain increments, re-
spectively. On the other hand, these sign-dependent variables can be considered
as the Lagrange-multipliers of the sign-dependent locking and yield conditions
g(εij ) � 0 and f (σij ) � 0, respectively.

By means of the indicators, the strain and stress energy density functionals can
be constructed respectively as

W(εij ) = W0(εij )+ JK(εij ) and Wc(σij ) = Wc
0 (σij )+ J cK(σij )

(34)

Thus, the multivalued constitutive law representing substationarity yields the in-
clusions

εij ∈ ∂Wc(σij ) ≡ ∂Wc
0 (σij )+ ∂J cK(σij )

≡ ∂Wc
0 (σij )+

{
"∂f (σij ) = "fij , for σij ∈ Kc

0 for σij /∈ Kc
(35)

σij ∈ ∂W(εij ) ≡ ∂W0 (εij )+ ∂JK(εij )

≡ ∂W0 (εij )+
{
3∂g(εij ) = 3gij , for εij ∈ K
0 for εij /∈ K (36)

for plastification and locking process, where fij and gij are the gradients of the
yield and locking convex hypersurfaces, respectively.
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Figure 4. The constrained extremum problem.

The modified variational problem extended to the sign-dependent variables can
symbolically be illustrated by means of the Hu-Washizu principle seen in Fig-
ure 4. as a surface to be extremized under the inequality subsidiary conditions
g(εij ) � 0 and f (σij ) � 0. This leads to a constrained extremum problem,
where the domain of the possible solutions is restricted by the inequality side con-
ditions. Consequently, the stationarity condition leads to variational inequalities.
The numerical solution of the load history analysis can be solved as mathematical
programming problem.

3.3. ONE-DIMENSIONAL NONSMOOTH TANGENT MODULI

By applying the concept of tangentially equivalent elastic structure of Bazant and
Cedolin (1991, p. 635), the responses of an inelastic problem can be solved in small
loading steps by a series of quasielastic analysis, taking the inelastic constitutive
law as a thermodynamic equation of state into account. Thus, for a small step dε,
the increment of the strain energy can be considered elastic, so the strain energy
W(ε) at ε can as the potential function of the stresses σ (ε) be considered, that is,
the classical potential law can be applied. This principle can be extended to the
nonsmooth cases, to the superpotential law, as well.

By extending the tangent modulus to the unloading, too, the following stress-
strain function including the case dε = 0 is considered

σ (ε) =
{
σ0(ε) = k0(ε)(ε − ε0(ε)) if dε � 0

σt(ε) = kt(ε)(ε − εt (ε)) if dε � 0
(37)
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Figure 5. The nonsmooth multivalued tangent modulus.

in which the function σ0(ε) concerns both the elastic-plastic or elastic-plastic-
damage unloading, while the function σt(ε) belongs to loading only, seen in Fig-
ure 5a. Note that function σt(ε) represents Hill’s linear comparison solid of the
original nonlinear material. Here kt (ε) and k0(ε) are the loading and unloading
moduli related to the linear functions σt(ε) and σ0(ε) at ε, respectively. Strain
values εt (ε) and ε0(ε) are the intersections of the straight lines σt(ε) and σ0(ε)

with the axis ε, respectively. As we can see in Figure 5a, all these values are
continuously changing in term of ε, but at a fixed strain value ε, they are constant,
that is

σ (ε) =
{
k0(ε − ε0) if dε � 0

kt(ε − εt ) if dε � 0
(38)



DEVELOPMENT OF THE TANGENT MODULUS 93

Figure 6. The nonsmooth tangent modulus of polygonal material.

Consequently, for obtaining the tangent modulus at any fixed ε, for the nonsmooth
relation (38), subdifferentiation is applied

K̄t (ε) ≡ ∂̄σ (ε) =



k0 if dε < 0

[kt , k0] if dε = 0

kt if dε > 0

(39)

yielding the nonsmooth tangent modulus seen in Figure 2b, as a multivalued func-
tion by forming an interval of [kt , k0] at the condition dε = 0. Here k0 is the initial
elastic modulus and kt = kt (ε) is the actual tangent of function σ (ε) Thus, the
actual occurring stiffness Kt(ε) is the element of the set K̄t (ε) that is Kt(ε) ∈
K̄t (ε).

However, the actual tangent kt = kt (ε) is changing with changing ε which
makes the solution difficult. That is why, in certain problems, polygonal approx-
imation seems to be reasonable. Moreover, some materials show originally poly-
gonal characteristics. In this case, the solution gives directly the correct results, of
course. Figure 6a shows a polygonal material function. Here we consider break
type functions without jumps.
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Figure 7. Polygonal damage.

Let each segment i of the polygonal material law in Figure 6a be specified by the
relating modulus kit as the constant slope of segment i, and by the strain constant
εit as the intersection of segment i and the axis ε. Thus, at the break point ε = εi ,
the material function σ (ε) can be written in the form

σ (ε)i =
{
ki−1
t (ε − εi−1

t ) if dε � 0

kit (ε − εit ) if dε � 0
(40)

which is similar to the function (38) since the segment preceding the break point
ε = εi can as unloading path be considered. Practically, during a loading process,
case dε < 0 belongs to unloading only. If the material is reversible, the unloading
is represented in (40) by the modulus ki−1

t , while for irreversible materials ki−1
t = 0

for dε < 0.
The nonsmooth tangent modulus K̄t (ε)i for ε = εi , seen in Figure 6b can be

obtained by subdifferentiating the function σ (ε)i at ε = εi , relating to both loading
and unloading

K̄t (ε)
i ≡ ∂̄(σ (ε)i) =



ki−1
t if dε < 0

[kit , ki−1
t ] if dε = 0

kit if dε > 0

(41)

The concept of the nonsmooth tangent modulus of polygonal material behaviour
can be extended to the strain softening, namely, to damage problems, too. As a
typical damage property, in the case of active damage loading, the loading moduli
kit are negative. In contrast to the elastic-plastic unloading, in damaging cases, the
unloading and reloading moduli are given individually. Consider a polygonal func-
tion of an elastic-plastic-damaging material seen in Figure 7. Also in the case of
damaging materials, the unloading paths are linear, but in contrast to the plastic
unloading, unloading occurs with different elastic moduli. Thus, the unloading
moduli kut are changing depending on the actual strains.

Consider now the lump like material nonsmoothness seen in Figure 2d and
in Figure 8. Jump like material characteristics can occur in both strain softening
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Figure 8. Jump like material laws.

or strain hardening phases, like in composite materials or locking behaviour, re-
spectively. Figure 8 represents the behaviour of the perfectly rigid-plastic material.
In this case, the unloading and reloading take place in a perfectly rigid manner
under the condition dε = 0, manifested in a jump. The material behaviour is
characterized by the inclusion

σ (ε) ∈ σ̄ (ε) =



σ2 if dε < 0

[σ2, σ1] if dε = 0

σ1 if dε > 0

(42)

according which, independently of ε, the actual stresses are the elements of the set
of stresses related equally to loading, unloading and reloading.

For obtaining the tangent modulus, this function needs to be subdifferentiated.
However, since this function has jumps at any dε = 0, the Lipschitz condition
does not fulfil, so nor the subdifferential of Moreau, nor the generalized gradient
of Clarke exists. Still, if we want to obtain the tangent modulus in such kind of
Heaviside type material functions, a distributional derivative is applied. Thus the
generalized nonsmooth tangent modulus yields

K̄t (ε) ≡ ∂̄(σ̄ (ε)) =
{

0 if dε �= 0

±(σ1 − σ2)δ(dε) if dε = 0
(43)

where δ(dε) is the Dirac impulse, see Keener (1988). For the condition dε = 0,
the tangent modulus forms an interval of indefinite length, namely, in the case of
loading (unloading) it tends to the positive (negative) infinite.

Naturally, an arbitrary jump [σi−1, σi] in the material function can equally hap-
pen for a reversible or an irreversible material at any strain value. Consider now
a locking material with a jump σi−1, σi , both preceded and followed by elastic
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behaviour seen in Figure 2c. The nonsmooth tangent modulus at ε then reads

K̄t (ε) ≡ ∂̄(σ̄ (ε)) =



ki−1
t if dε < 0

±(σi − σi−1)δ(dε) if dε = 0

kit if dε > 0

(44)

since the unloading paths are equal to the loading ones.
Construct now the nonsmooth tangent modulus related to a discrete structural

model.

4. The nonsmooth structural tangent modulus

Let us consider isothermal deformations of a time-independent solid body subject
to a quasi-static conservative loading program. Any material property is assumed
to vary smoothly in the geometric space, while the material function in itself is
nonsmooth in the function space.

By supposing that the body in the initial configuration occupies a spatial domain
50 and is bounded by the smooth surface 60, let us consider that in the volume 50

the body forces Fi , and on a nonzero part 6p0 of the surface 60 the surface tractions
Pi , while on the complementary part 6u0, the displacements ui are specified. Let us
assume a scalar loading parameter λ to be varied continuously and infinitely slowly
in time.

Let us consider Lagrangian description where Sij is the second Piola–Kirchhoff
stress tensor and Eij is the Lagrange–Green strain tensor.

Generally, any nonlinear structural analyses are based on the principle of in-
cremental virtual work representing equilibrium condition of a given state of the
load history analysis. The equilibrium condition can be extended to nonsmooth
materials as an inclusion

0 ∈ δ9L̄ =
∫
50

(S̄ij + dS̄ij ) δ9Eij d50 −
∫
50

(λFi0 + dλFi0) δ9ui d50

−
∫
6p0

(λPi0 + dλPi0) δ9ui d60, (45)

where the term 9 represents the total, d the first order increments and δ the vari-
ation. The nonlinear and nonsmooth material is specified by the nonsmooth func-
tion S̄ij (Emn) obtained by the inclusion of the superpotential law

S̄ij (Emn) ∈ ∂̄ijW(Emn), (46)

while the increments of the nonsmooth stresses are specified by

dS̄ij (Emn) ∈ ∂̄kl S̄ij (Emn)dEkl ≡ ∂̄kl(∂̄ijW(Emn))dEkl ≡ K̄ijkl(Emn)dEkl,

(47)
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whereW(Emn) is the nonsmooth nonconvex superpotential, K̄ijkl(Emn) is the non-
smooth multivalued material tangent modulus tensor.

The Lagrange–Green strain tensor is smooth in term of the displacement gradi-
ents ui,j

Eij = 1

2
(ui,j + uj,i + uk,iuk,j ) (48)

in which linear and nonlinear parts can be distinguished. In the case of large dis-
placement gradients, that is ui,j >> 0, large or finite strains, while in the case
of small displacement gradients, if ui,j << 1, small or infinitesimal strains are
distinguished.

In (45) we need the total increment of large strains related to the n-th equilib-
rium configuration as

9Eij = dEij + d2Eij = 1

2
(9ui,j +9uj,i + unk,i 9uk,j

+unk,j 9uk,i +9uk,i9uk,j , (49)

containing the fist and second order increments of the large strains at uni .
In (45) the first variation of the total increment of the large strains is needed,

too, as

δ9Eij = δdEij + δd2Eij = 1

2
(δ9ui,j + δ9uj,i + unk,i δ9uk,j

+unk,j δ9uk,i +9uk,i δ9uk,j + δ9uk,i 9uk,j ) (50)

where the variation of the first and second increments can be distinguished. The
increments and variations of the displacement gradients ui,j can be analyzed after
the discretization only.

The displacement function ui for a single finite element within the body can be
expressed in term of both geometric and functional coordinates X and q, respect-
ively, as

u
(3)

= u(X
(3)
,q) =


 u1(X,q)
u2(X,q)
u3(X,q)


 =


 u1(X1, X2, X3; q1, q2, . . . , qr)

u2(X1, X2, X3; q1, q2, . . . , qr)

u3(X1, X2, X3; q1, q2, . . . , qr)


 (51)

where X are the (local) coordinates of the discretized geometric space (the body
in itself), and q are the coordinates of the discretized function space, while r is the
number of generalized coordinates (finite degree of freedom) of the elements.

Here we distinguish small/large displacements, functions u to be linear/nonlinear
in q, respectively. Practically, in the case of large displacements, parameters q
contain rotational elements, that is, trigonometrical relations in u, in term of q.
For small displacements, functions u are linear in q, thus, the variables X and q in
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(51) can be separated by the linear combination

ui =
m∑
k=1

qki N
k
i (X), (52)

where Nk
i (X) are the interpolation or shape functions corresponding to the nodal

points of number m within the element. Expression (52) leads to the classical basic
expression of the linear finite element displacement method

u(X
(3)
,q) = N(X)

(3,r)
q
(r)
, (53)

where matrix N(X) contains the shape functions Nk
i (X) of the classical linear FEM

approach.
In the case of nonlinear displacements, when the direct separation (52) cannot

be applied, incrementally linear analysis is needed, that is, the linear combination
(53) can be applied to the increments of the n-th configuration only. By considering
the increments of the large displacements as 9u = du + d2u, for the incremental
version of (53) we have

d u
(3)

= ∂u(X,q)
∂qj

∣∣∣∣
n

dqj = Hn

(3,r)
d q
(r)
, (54)

moreover, the nonlinearity of the displacements is represented by

d2 u
(3)

= 1

2

∂2u(X,q)
∂qj∂qk

∣∣∣∣
n

dqj dqk = 1

2
dqT
(r)

Wn
(r,3,r)

d q
(r)
, (55)

which are the first and second order increments of the large displacements, respect-
ively, related to the n-th configuration. Matrix Hn has 3×r elements, while matrix
Wn is three dimensional of measure r×3×r. At a certain load level the increment-
ally linear relation (54) can as the basic relation of the nonlinear finite element
displacement method be considered, while matrix Wn represents the nonlinear
geometry.

The variation of the increments of large displacements are as follows

δ9u = Hn δdq + dqTWn δdq (56)

where the variation of the first and second increments can be distinguished as
δdu = Hn δdq and δd2u = dqTWn δdq. After discretizing the displacements,
the matrix version of the Green-Lagrange strains can be obtained in the form

E
(6)

= E(u)
(6)

= A
(6,3)

u
(3)

+1

2
u
(3)

T G
(3,6,3)

u
(3)

(57)

where E are in vector arrangement as ET = [E11 E22 E33 2E12 2E13 2E23],
moreover, A and G are differential operators of the geometric space X, concerning
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the displacement gradients represented by the linear term Au in the small (infin-
itesimal) strains, and, by the nonlinear term 1/2 uT G u in the case of large (finite)
strains. Matrix G is three-dimensional, consisting of six layers of sub-matrices of
measure 6×3.

By considering the discrete versions of the increments and variations of large
strains in term of large displacements, we can obtain

9E = (AHn + uTnGHn) dq + 1/2 dqT (AWn + uTnGWn + HT
nGHn)dq,

(58)

in which the first and second increments can be distinguished as dE = (AHn +
uTnGHn)dq + 1/2dqT (AWn + uTnGWn)dq and d2E ∼= 1/2dqTHT

nGHndq where
the latter is obtained by eliminating the higher than second order terms in dq.
Moreover, the variation of increments are

δ9E = (AHn + uTnGHn) δdq + dqT (AWn + uTnGWn + HT
nGHn) δdq,

(59)

in which δdE = (AHn + uTnGHn) δdq + dqT (AWn + uTnGWn)δdq and δd2E ∼=
dqTHT

nGHn δdq. These results are valid to nonlinear strains and nonlinear dis-
placements. By applying linear strains with nonlinear displacements, or, conversely,
nonlinear strains with linear displacements, moreover both linear strains and dis-
placements, the above increments and variations can be simplified. More details
can be seen in Kurutz (1999).

By considering the discrete versions of the state variable functions, the incre-
mental virtual work (45) related to nonsmooth materials, for a single element of
the assemblage can be obtained in matrix form as

δ9L̄e ≡
∫
5e0

(S̄T +9ET D̄t ) δ9E d50 −
∫
5e0

(λFT0 + dλFT0 )δ9u d50

−
∫
6e
(λPT0 + dλPT0 ) δ9u d60 (60)

where D̄t contains the nonsmooth material tangent moduli. Due to the nonlinearity
of the strains and displacements, the expression (60) is fully nonlinear, thus, further
concepts of linearization are necessary, see Kurutz (1999). The linearized and ho-
mogenized form of the incremental virtual work in the case of nonsmooth material
with large strains and large displacements yields a set
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δ9L̄e ≡ dqT
{∫

50

HT
n (A

T + GTBun) D̄t (uTnG + A)Hn d50

+
∫
50

S̄−T (AWn + uTnGWn + HT
nGHn) d50

−
∫
50

λFT0 Wn d50 −
∫
60

λPT0 Wn d60

}
δdq

−dλ
{∫

5e0

FT0 Hn d50 +
∫
6p0

PT0 Nn d60

}
δdq (61)

related to a single element of the discretized body, where

k̄nt ≡
∫
5e0

HT
n (A

T + GT un) D̄n
t (u

T
nG + A)Hn d50

+
∫
5e0

S̄Tn (AWn + uTnGWn + HT
nGHn) d50

−
∫
5e0

λFT0 Wn d50 −
∫
6e0

λPT0 Wn d60 (62)

is the multivalued elementary tangent stiffness matrix of nonsmooth nonlinear case,
related to the n-th equilibrium configuration. By extending the principle of incre-
mental virtual work to the total element assemblage (after some coordinate trans-
formation and other operations not detailed here), the incremental finite element
equilibrium relation of the entire structure can be obtained as an inclusion

0 ∈ dqT K̄n
t δdq − dRT

n δdq = (dqT K̄n
t − dRT

n ) δdq, (63)

where K̄T
n is the nonsmooth structural tangent stiffness matrix which can basic-

ally be divided into three parts. The first part is the so-called nonsmooth material
tangent stiffness

k̄mat
tang =

∫
5e0

HT
n (A

T + GT un) D̄n
t (u

T
nG + A)Hn d50 (64)

containing the nonsmooth material tangent moduli including unloading, moreover,
linear and nonlinear strains. The second part, named nonsmooth geometric stiffness
matrix

k̄stress
geom =

∫
5e0

S̄Tn (AWn + uTnGWn + HT
nGHn) d50 (65)

represents the actual nonsmooth stresses and the geometric nonlinearities including
both nonlinear strains and displacements. The third part, named loading stiffness
matrix
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Figure 9. The stable-symmetric bifurcation model with nonsmooth material.

kload
geom =

∫
5e0

λFT0 Wn d50 +
∫
6e0

λPT0 Wn d60 (66)

is associated with displacement nonlinearity, being smooth function.
The incremental analysis is based on the tangent stiffness matrix. By using the

detailed forms of the discrete strains and displacements, different forms of the
tangent stiffness matrix can be obtained. In the following tablet the main versions
of the nonsmooth tangent stiffness matrix modified by the different linearization
and approximation concepts are summarized.

Nonsmooth Elementary Tangent Stiffness

Nonsmooth Large strains Small strains

material

Large
∫
5e0

HTn (A
T + GT un)D̄nt (u

T
nG + A)Hnd50

∫
5e0

HTn AT D̄nt AHnd50

displacements + ∫
5e0

S̄Tn (AWn + uTnGWn + HTnGHn)d50 +
∫
5e0

S̄TnAWnd50

− ∫
5e0
λFT0 Wnd50 − ∫

6e0
λPT0 Wnd60 − ∫

5e0
λFT0 Wnd50

− ∫
60
λPT0 Wnd60

Small
∫
5e0

NT (AT + GT un)D̄nt (u
T
nG + A)Nd50

∫
5e0

NT AT D̄nt ANd50

displacements + ∫
5e0

S̄Tn (N
TGN)d50

5. Application of the nonsmooth tangent modulus

Figure 9a shows the classical structural model of stable-symmetric bifurcation
problen, a rigid bar supported by a rotational spring. The moment M in the spring
represents the stress, while the rotation ϑ represents the strain variable. Here the
spring is supposed to be nonlinear and nonsmooth, specified by the polygonal ma-
terial function M̄(ϑ) seen in Figure 9b. According to Kurutz (1993, 1994, 1996)
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a nonlinear function of an elastic material can be approximated by a polygonal
composed by the segments

M(q)j = cj (q − ϑj) 0 < cj < ∞ j = 1, 2, . . . , n (67)

related to the j-th segment of the material polygonal. Here cj is the slope of the j-th
segment, and ϑj is the intersection of the j-th segment and the strain axis, seen in
Figure 9b.

The functional finitization needs to introduce the generalized coordinates. In
these simple case of one degree of kinematical freedom, the vector q has a single
element q = ϑ , the rotation at the support hinge.

Figure 9a shows the applied one parameter vertical load F = λF0 where F0 =
1. Due to the single vertical load, the displacement function is represented by
the vertical displacement of the top of the cantilever, which, by assuming perfect
nonlinear displacements, yields u = l(1 − cos q). The nonlinear strain function is
ϑ(u) = arccos(1 − u/l) while ϑ(u(q)) = arccos(1 − u/l) = q.

In this way, by considering nonlinear nonsmooth damaging material

M(q)j = cj (q − ϑj)0 < cj < ∞ j = 1, 2, . . . , n (68)

represented by the polygonal seen in Figure 10a as the lower envelope of the func-
tions in (68), due to the damaging characteristics. The nonsmooth equilibrium path
forms the lower envelope of the component functions again, that is

λ̄(q) = min




1

F0l




cj (q−ϑj )
sin q for 0 < cj < ∞[
Mj,j−1

sin ϑj
,
Mj,j+1

sin ϑj

]
for cj = ∞ j = 1, 2, . . . , n

Mj

sin q for cj = 0



(69)

illustrated in Figure 10b for the right hand side deflections 0 � q � π . As it is
concluded in Kurutz (1993, 1994, 1996), for softening material phases the lower
envelope, for hardening material phases the upper envelope yields the equilibrium
path.

For qualifying the stability of the equilibrium paths, we need the second subdif-
ferential of the nonsmooth superpotential. The nonsmooth function of the structural
tangent stiffness K̄(q) are seen in Figure 10c. For differentiable points the tangent
stiffness consists of a single value, while for subdifferentiable points it forms an
interval. The jump like function of the associated multivalued tangent stiffness
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Figure 10. Nonsmooth material, equilibrium paths and tangent stiffness.



104 MARTA KURUTZ

Figure 11. The model with damage and unloading.

matrix is as follows:

K̄(q) =




cj

(
1 − q−ϑj

tgq

)
for 0 < cj < ∞[

cj

(
1 − q−ϑj

tgϑj,j+1

)
, cj+1

(
1 − q−ϑj+1

tgIj,j+1

)]
for 0 < cj < ∞
and q = ϑj+1

positive intervals for cj = ∞
Mj

tgq for cj = 0

(70)

containing intervals associated with the break points of the material polygonal.
In the one dimensional case, the stability of equilibrium at any state represented

by the points of the equilibrium paths seen in Figure 10b, can be qualified by a
simple sign control of the related functions of the tangent stiffness. In order to find
the critical state and critical load, we consider the inclusion

0 ∈ detK̄(q) (71)

knowing that the determinant of an interval matrix forms an interval, too. In this
one-dimensional case, this matrix has a single element which is equal to its determ-
inant in itself. Thus, the critical states can be seen in Figure 10b, as well.

Figure 11a shows a model where the phenomenon of unloading can also be
demonstrated. The structure has the total length l consisting of two rigid elements
of length αl and (1 − α)l with the ratio ξ = α/(1 − α) specifying the position of
the middle joint. This system has also one degree of kinematical freedom. Let the
parameter q be the angle of rotation q = ϑA of the support joint A.
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Let the elastic-plastic-damaging behaviour of the joints be represented by the
material function M(ϑ) seen in Figure 11b, prescribed uniformly for the three
springs. In contrast to the plastic unloading, in the damage zone the unloading
moduli can be specified individually.

The displacement function u(q) and the strain function ε(u) are nonlinear, since

u(q) =

 uBxuBy
uCy


 =


 lα sin q

lα(1 − cos q)
lα(1 − cos q)+ l(1 − α)(1 − cos(arcsin(ξ sin q)))


 =


 u1(q)

u2(q)

u3(q)


 (72)

and

ε(u) =

 ϑAϑB
ϑC


 =


 arcsin(u1/αl)

arcsin(u1/αl)+ arcsin(u1/((1 − α)l)
arcsin(u1/((1 − α)l)


 (73)

moreover

ε(u(q)) =

 ϑAϑB
ϑC


 =


 q

q + arcsin(ξ sin q)
arcsin(ξ sin q)


 (74)

Let us consider the case of α = 1/3, that is ξ = 0.5, namely, if the hinge B is in
the lower third of the total height l. In Figure 12a the structural material behaviour
is illustrated, as the resultant of the three springs, reduced to the support hinge A,
due to the choice q = ϑA.

Figure 12a shows the nonsmooth function of the structural material behaviour
resulted by the simultaneously different material phases of each joints A, B and D.
The simultaneity of the different material phases depends on the actual strains at the
joints controlled by the actual rotations ε(q), namely, the compatibility transform-
ations (74). As a consequence of the softening behaviour, the structural moment
function forms the lower envelope of the component functions in Figure 12a.

The concerning nonsmooth equilibrium paths λ̄(q) of the structure are seen in
Figure 12b. For the sake of simplicity this time we follow the behaviour of the
structure in the right-hand side interval 0 � q � π again. We can observe that
certain paths can not be realized since there is no such coincidence of the material
phases of the three springs. The equilibrium path λ̄(q) forms the lower envelope of
the realized component functions in Figure 12b. At ϑA = π/2 of the joint A, joint
C starts to be unloaded causing certain energy release.

In Figure 12c the multivalued function of the structural tangent stiffness is illus-
trated. Due to the gradual strain softening, the tangent stiffness tends to be negative
indicating instabilities.
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Figure 12. Nonsmooth damage with unloading.
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6. Conclusions

Nonsmooth material and structural tangent moduli are in the focus of this paper.
After a historical review, where a century long development of the tangent modulus
was detailed, we introduced the nonsmooth version of it, based on the pioneer work
of P.D. Panagiotopoulos.

As a conclusion, the tangent modulus containing both material loading and
unloading is always multivalued. The nonsmooth tangent modulus related to the
break points of a material polygon yields intervals of finite length, while related to
the jumps of a material function leads intervals of infinite length concerning to the
Dirac-impulse. The nonsmooth tangent modulus of polygonal material behaviour
can be applied to the cases of strain softening and damage too.

The concept of nonsmooth material tangent modulus can be extended to the
whole structure, leading to nonsmooth structural tangent modulus. The general-
ized nonsmooth structural tangent modulus is multivalued. In the case of uniaxial
material behaviour, it forms a diagonal interval matrix. For a break (jump) type
material discontinuity, the intervals are finite (infinite).

One-dimensional illustrations for simple discrete structures with uniaxial ma-
terial laws helped to prove the advantage of the nonsmooth material and structural
tangent modulus.
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